
Chapter 2

Basics of Algorithm Analysis

Analyzing algorithms involves thinking about how their resource require-

ments—the amount of time and space they use—will scale with increasing

input size. We begin this chapter by talking about how to put this notion on a

concrete footing, as making it concrete opens the door to a rich understanding

of computational tractability. Having done this, we develop the mathematical

machinery needed to talk about the way in which different functions scale

with increasing input size, making precise what it means for one function to

grow faster than another.

We then develop running-time bounds for some basic algorithms, begin-

ning with an implementation of the Gale-Shapley algorithm from Chapter 1

and continuing to a survey of many different running times and certain char-

acteristic types of algorithms that achieve these running times. In some cases,

obtaining a good running-time bound relies on the use of more sophisticated

data structures, and we conclude this chapter with a very useful example of

such a data structure: priority queues and their implementation using heaps.

2.1 Computational Tractability
A major focus of this book is to find efficient algorithms for computational

problems. At this level of generality, our topic seems to encompass the whole

of computer science; so what is specific to our approach here?

First, we will try to identify broad themes and design principles in the

development of algorithms. We will look for paradigmatic problems and ap-

proaches that illustrate, with a minimum of irrelevant detail, the basic ap-

proaches to designing efficient algorithms. At the same time, it would be

pointless to pursue these design principles in a vacuum, so the problems and

30 Chapter 2 Basics of Algorithm Analysis

approaches we consider are drawn from fundamental issues that arise through-

out computer science, and a general study of algorithms turns out to serve as

a nice survey of computational ideas that arise in many areas.

Another property shared by many of the problems we study is their

fundamentally discrete nature. That is, like the Stable Matching Problem, they

will involve an implicit search over a large set of combinatorial possibilities;

and the goal will be to efficiently find a solution that satisfies certain clearly

delineated conditions.

As we seek to understand the general notion of computational efficiency,

we will focus primarily on efficiency in running time: we want algorithms that

run quickly. But it is important that algorithms be efficient in their use of other

resources as well. In particular, the amount of space (or memory) used by an

algorithm is an issue that will also arise at a number of points in the book, and

we will see techniques for reducing the amount of space needed to perform a

computation.

Some Initial Attempts at Defining Efficiency

The first major question we need to answer is the following: How should we

turn the fuzzy notion of an “efficient” algorithm into something more concrete?

A first attempt at a working definition of efficiency is the following.

Proposed Definition of Efficiency (1): An algorithm is efficient if, when

implemented, it runs quickly on real input instances.

Let’s spend a little time considering this definition. At a certain level, it’s hard

to argue with: one of the goals at the bedrock of our study of algorithms is

solving real problems quickly. And indeed, there is a significant area of research

devoted to the careful implementation and profiling of different algorithms for

discrete computational problems.

But there are some crucial things missing from this definition, even if our

main goal is to solve real problem instances quickly on real computers. The

first is the omission of where, and how well, we implement an algorithm. Even

bad algorithms can run quickly when applied to small test cases on extremely

fast processors; even good algorithms can run slowly when they are coded

sloppily. Also, what is a “real” input instance? We don’t know the full range of

input instances that will be encountered in practice, and some input instances

can be much harder than others. Finally, this proposed definition above does

not consider how well, or badly, an algorithm may scale as problem sizes grow

to unexpected levels. A common situation is that two very different algorithms

will perform comparably on inputs of size 100; multiply the input size tenfold,

and one will still run quickly while the other consumes a huge amount of time.

2.1 Computational Tractability 31

So what we could ask for is a concrete definition of efficiency that is

platform-independent, instance-independent, and of predictive value with

respect to increasing input sizes. Before focusing on any specific consequences

of this claim, we can at least explore its implicit, high-level suggestion: that

we need to take a more mathematical view of the situation.

We can use the Stable Matching Problem as an example to guide us. The

input has a natural “size” parameter N; we could take this to be the total size of

the representation of all preference lists, since this is what any algorithm for the

problem will receive as input. N is closely related to the other natural parameter

in this problem: n, the number of men and the number of women. Since there

are 2n preference lists, each of length n, we can view N = 2n2, suppressing

more fine-grained details of how the data is represented. In considering the

problem, we will seek to describe an algorithm at a high level, and then analyze

its running time mathematically as a function of this input size N.

Worst-Case Running Times and Brute-Force Search

To begin with, we will focus on analyzing the worst-case running time: we will

look for a bound on the largest possible running time the algorithm could have

over all inputs of a given size N, and see how this scales with N. The focus on

worst-case performance initially seems quite draconian: what if an algorithm

performs well on most instances and just has a few pathological inputs on

which it is very slow? This certainly is an issue in some cases, but in general

the worst-case analysis of an algorithm has been found to do a reasonable job

of capturing its efficiency in practice. Moreover, once we have decided to go

the route of mathematical analysis, it is hard to find an effective alternative to

worst-case analysis. Average-case analysis—the obvious appealing alternative,

in which one studies the performance of an algorithm averaged over “random”

instances—can sometimes provide considerable insight, but very often it can

also become a quagmire. As we observed earlier, it’s very hard to express the

full range of input instances that arise in practice, and so attempts to study an

algorithm’s performance on “random” input instances can quickly devolve into

debates over how a random input should be generated: the same algorithm

can perform very well on one class of random inputs and very poorly on

another. After all, real inputs to an algorithm are generally not being produced

from a random distribution, and so average-case analysis risks telling us more

about the means by which the random inputs were generated than about the

algorithm itself.

So in general we will think about the worst-case analysis of an algorithm’s

running time. But what is a reasonable analytical benchmark that can tell us

whether a running-time bound is impressive or weak? A first simple guide

32 Chapter 2 Basics of Algorithm Analysis

is by comparison with brute-force search over the search space of possible

solutions.

Let’s return to the example of the Stable Matching Problem. Even when

the size of a Stable Matching input instance is relatively small, the search

space it defines is enormous (there are n! possible perfect matchings between

n men and n women), and we need to find a matching that is stable. The

natural “brute-force” algorithm for this problem would plow through all perfect

matchings by enumeration, checking each to see if it is stable. The surprising

punchline, in a sense, to our solution of the Stable Matching Problem is that we

needed to spend time proportional only to N in finding a stable matching from

among this stupendously large space of possibilities. This was a conclusion we

reached at an analytical level. We did not implement the algorithm and try it

out on sample preference lists; we reasoned about it mathematically. Yet, at the

same time, our analysis indicated how the algorithm could be implemented in

practice and gave fairly conclusive evidence that it would be a big improvement

over exhaustive enumeration.

This will be a common theme in most of the problems we study: a compact

representation, implicitly specifying a giant search space. For most of these

problems, there will be an obvious brute-force solution: try all possibilities

and see if any one of them works. Not only is this approach almost always too

slow to be useful, it is an intellectual cop-out; it provides us with absolutely

no insight into the structure of the problem we are studying. And so if there

is a common thread in the algorithms we emphasize in this book, it would be

the following alternative definition of efficiency.

Proposed Definition of Efficiency (2): An algorithm is efficient if it achieves

qualitatively better worst-case performance, at an analytical level, than

brute-force search.

This will turn out to be a very useful working definition for us. Algorithms

that improve substantially on brute-force search nearly always contain a

valuable heuristic idea that makes them work; and they tell us something

about the intrinsic structure, and computational tractability, of the underlying

problem itself.

But if there is a problem with our second working definition, it is vague-

ness. What do we mean by “qualitatively better performance?” This suggests

that we consider the actual running time of algorithms more carefully, and try

to quantify what a reasonable running time would be.

Polynomial Time as a Definition of Efficiency

When people first began analyzing discrete algorithms mathematically—a

thread of research that began gathering momentum through the 1960s—

2.1 Computational Tractability 33

a consensus began to emerge on how to quantify the notion of a “reasonable”

running time. Search spaces for natural combinatorial problems tend to grow

exponentially in the size N of the input; if the input size increases by one, the

number of possibilities increases multiplicatively. We’d like a good algorithm

for such a problem to have a better scaling property: when the input size

increases by a constant factor—say, a factor of 2—the algorithm should only

slow down by some constant factor C.

Arithmetically, we can formulate this scaling behavior as follows. Suppose

an algorithm has the following property: There are absolute constants c > 0

and d > 0 so that on every input instance of size N, its running time is

bounded by cNd primitive computational steps. (In other words, its running

time is at most proportional to Nd.) For now, we will remain deliberately

vague on what we mean by the notion of a “primitive computational step”—

but it can be easily formalized in a model where each step corresponds to

a single assembly-language instruction on a standard processor, or one line

of a standard programming language such as C or Java. In any case, if this

running-time bound holds, for some c and d, then we say that the algorithm

has a polynomial running time, or that it is a polynomial-time algorithm. Note

that any polynomial-time bound has the scaling property we’re looking for. If

the input size increases from N to 2N, the bound on the running time increases

from cNd to c(2N)d = c · 2dNd, which is a slow-down by a factor of 2d. Since d is

a constant, so is 2d; of course, as one might expect, lower-degree polynomials

exhibit better scaling behavior than higher-degree polynomials.

From this notion, and the intuition expressed above, emerges our third

attempt at a working definition of efficiency.

Proposed Definition of Efficiency (3): An algorithm is efficient if it has a

polynomial running time.

Where our previous definition seemed overly vague, this one seems much

too prescriptive. Wouldn’t an algorithm with running time proportional to

n100—and hence polynomial—be hopelessly inefficient? Wouldn’t we be rel-

atively pleased with a nonpolynomial running time of n1+.02(log n)? The an-

swers are, of course, “yes” and “yes.” And indeed, however much one may

try to abstractly motivate the definition of efficiency in terms of polynomial

time, a primary justification for it is this: It really works. Problems for which

polynomial-time algorithms exist almost invariably turn out to have algorithms

with running times proportional to very moderately growing polynomials like

n, n log n, n2, or n3. Conversely, problems for which no polynomial-time al-

gorithm is known tend to be very difficult in practice. There are certainly

exceptions to this principle in both directions: there are cases, for example, in

34 Chapter 2 Basics of Algorithm Analysis

Table 2.1 The running times (rounded up) of different algorithms on inputs of

increasing size, for a processor performing a million high-level instructions per second.

In cases where the running time exceeds 1025 years, we simply record the algorithm as

taking a very long time.

n n log2 n n2 n3 1.5n 2n n!

n = 10 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 4 sec

n = 30 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 18 min 1025 years

n = 50 < 1 sec < 1 sec < 1 sec < 1 sec 11 min 36 years very long

n = 100 < 1 sec < 1 sec < 1 sec 1 sec 12,892 years 1017 years very long

n = 1,000 < 1 sec < 1 sec 1 sec 18 min very long very long very long

n = 10,000 < 1 sec < 1 sec 2 min 12 days very long very long very long

n = 100,000 < 1 sec 2 sec 3 hours 32 years very long very long very long

n = 1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long

which an algorithm with exponential worst-case behavior generally runs well

on the kinds of instances that arise in practice; and there are also cases where

the best polynomial-time algorithm for a problem is completely impractical

due to large constants or a high exponent on the polynomial bound. All this

serves to reinforce the point that our emphasis on worst-case, polynomial-time

bounds is only an abstraction of practical situations. But overwhelmingly, the

concrete mathematical definition of polynomial time has turned out to corre-

spond surprisingly well in practice to what we observe about the efficiency of

algorithms, and the tractability of problems, in real life.

One further reason why the mathematical formalism and the empirical

evidence seem to line up well in the case of polynomial-time solvability is that

the gulf between the growth rates of polynomial and exponential functions

is enormous. Suppose, for example, that we have a processor that executes

a million high-level instructions per second, and we have algorithms with

running-time bounds of n, n log2 n, n2, n3, 1.5n, 2n, and n!. In Table 2.1,

we show the running times of these algorithms (in seconds, minutes, days,

or years) for inputs of size n = 10, 30, 50, 100, 1,000, 10,000, 100,000, and

1,000,000.

There is a final, fundamental benefit to making our definition of efficiency

so specific: it becomes negatable. It becomes possible to express the notion

that there is no efficient algorithm for a particular problem. In a sense, being

able to do this is a prerequisite for turning our study of algorithms into

good science, for it allows us to ask about the existence or nonexistence

of efficient algorithms as a well-defined question. In contrast, both of our

2.2 Asymptotic Order of Growth 35

previous definitions were completely subjective, and hence limited the extent

to which we could discuss certain issues in concrete terms.

In particular, the first of our definitions, which was tied to the specific

implementation of an algorithm, turned efficiency into a moving target: as

processor speeds increase, more and more algorithms fall under this notion of

efficiency. Our definition in terms of polynomial time is much more an absolute

notion; it is closely connected with the idea that each problem has an intrinsic

level of computational tractability: some admit efficient solutions, and others

do not.

2.2 Asymptotic Order of Growth
Our discussion of computational tractability has turned out to be intrinsically

based on our ability to express the notion that an algorithm’s worst-case

running time on inputs of size n grows at a rate that is at most proportional to

some function f (n). The function f (n) then becomes a bound on the running

time of the algorithm. We now discuss a framework for talking about this

concept.

We will mainly express algorithms in the pseudo-code style that we used

for the Gale-Shapley algorithm. At times we will need to become more formal,

but this style of specifying algorithms will be completely adequate for most

purposes. When we provide a bound on the running time of an algorithm,

we will generally be counting the number of such pseudo-code steps that

are executed; in this context, one step will consist of assigning a value to a

variable, looking up an entry in an array, following a pointer, or performing

an arithmetic operation on a fixed-size integer.

When we seek to say something about the running time of an algorithm on

inputs of size n, one thing we could aim for would be a very concrete statement

such as, “On any input of size n, the algorithm runs for at most 1.62n2 +
3.5n + 8 steps.” This may be an interesting statement in some contexts, but as

a general goal there are several things wrong with it. First, getting such a precise

bound may be an exhausting activity, and more detail than we wanted anyway.

Second, because our ultimate goal is to identify broad classes of algorithms that

have similar behavior, we’d actually like to classify running times at a coarser

level of granularity so that similarities among different algorithms, and among

different problems, show up more clearly. And finally, extremely detailed

statements about the number of steps an algorithm executes are often—in

a strong sense—meaningless. As just discussed, we will generally be counting

steps in a pseudo-code specification of an algorithm that resembles a high-

level programming language. Each one of these steps will typically unfold

into some fixed number of primitive steps when the program is compiled into

36 Chapter 2 Basics of Algorithm Analysis

an intermediate representation, and then into some further number of steps

depending on the particular architecture being used to do the computing. So

the most we can safely say is that as we look at different levels of computational

abstraction, the notion of a “step” may grow or shrink by a constant factor—

for example, if it takes 25 low-level machine instructions to perform one

operation in our high-level language, then our algorithm that took at most

1.62n2 + 3.5n + 8 steps can also be viewed as taking 40.5n2 + 87.5n + 200 steps

when we analyze it at a level that is closer to the actual hardware.

O, �, and �

For all these reasons, we want to express the growth rate of running times

and other functions in a way that is insensitive to constant factors and low-

order terms. In other words, we’d like to be able to take a running time like

the one we discussed above, 1.62n2 + 3.5n + 8, and say that it grows like n2,

up to constant factors. We now discuss a precise way to do this.

Asymptotic Upper Bounds Let T(n) be a function—say, the worst-case run-

ning time of a certain algorithm on an input of size n. (We will assume that

all the functions we talk about here take nonnegative values.) Given another

function f (n), we say that T(n) is O(f (n)) (read as “T(n) is order f (n)”) if, for

sufficiently large n, the function T(n) is bounded above by a constant multiple

of f (n). We will also sometimes write this as T(n) = O(f (n)). More precisely,

T(n) is O(f (n)) if there exist constants c > 0 and n0 ≥ 0 so that for all n ≥ n0,

we have T(n) ≤ c · f (n). In this case, we will say that T is asymptotically upper-

bounded by f . It is important to note that this definition requires a constant c

to exist that works for all n; in particular, c cannot depend on n.

As an example of how this definition lets us express upper bounds on

running times, consider an algorithm whose running time (as in the earlier

discussion) has the form T(n) = pn2 + qn + r for positive constants p, q, and

r. We’d like to claim that any such function is O(n2). To see why, we notice

that for all n ≥ 1, we have qn ≤ qn2, and r ≤ rn2. So we can write

T(n) = pn2 + qn + r ≤ pn2 + qn2 + rn2 = (p + q + r)n2

for all n ≥ 1. This inequality is exactly what the definition of O(·) requires:

T(n) ≤ cn2, where c = p + q + r.

Note that O(·) expresses only an upper bound, not the exact growth rate

of the function. For example, just as we claimed that the function T(n) =
pn2 + qn + r is O(n2), it’s also correct to say that it’s O(n3). Indeed, we just

argued that T(n) ≤ (p + q + r)n2, and since we also have n2 ≤ n3, we can

conclude that T(n) ≤ (p + q + r)n3 as the definition of O(n3) requires. The

fact that a function can have many upper bounds is not just a trick of the

notation; it shows up in the analysis of running times as well. There are cases

2.2 Asymptotic Order of Growth 37

where an algorithm has been proved to have running time O(n3); some years

pass, people analyze the same algorithm more carefully, and they show that

in fact its running time is O(n2). There was nothing wrong with the first result;

it was a correct upper bound. It’s simply that it wasn’t the “tightest” possible

running time.

Asymptotic Lower Bounds There is a complementary notation for lower

bounds. Often when we analyze an algorithm—say we have just proven that

its worst-case running time T(n) is O(n2)—we want to show that this upper

bound is the best one possible. To do this, we want to express the notion that for

arbitrarily large input sizes n, the function T(n) is at least a constant multiple of

some specific function f (n). (In this example, f (n) happens to be n2.) Thus, we

say that T(n) is �(f (n)) (also written T(n) = �(f (n))) if there exist constants

ǫ > 0 and n0 ≥ 0 so that for all n ≥ n0, we have T(n) ≥ ǫ · f (n). By analogy with

O(·) notation, we will refer to T in this case as being asymptotically lower-

bounded by f . Again, note that the constant ǫ must be fixed, independent

of n.

This definition works just like O(·), except that we are bounding the

function T(n) from below, rather than from above. For example, returning

to the function T(n) = pn2 + qn + r, where p, q, and r are positive constants,

let’s claim that T(n) = �(n2). Whereas establishing the upper bound involved

“inflating” the terms in T(n) until it looked like a constant times n2, now we

need to do the opposite: we need to reduce the size of T(n) until it looks like

a constant times n2. It is not hard to do this; for all n ≥ 0, we have

T(n) = pn2 + qn + r ≥ pn2,

which meets what is required by the definition of �(·) with ǫ = p > 0.

Just as we discussed the notion of “tighter” and “weaker” upper bounds,

the same issue arises for lower bounds. For example, it is correct to say that

our function T(n) = pn2 + qn + r is �(n), since T(n) ≥ pn2 ≥ pn.

Asymptotically Tight Bounds If we can show that a running time T(n) is

both O(f (n)) and also �(f (n)), then in a natural sense we’ve found the “right”

bound: T(n) grows exactly like f (n) to within a constant factor. This, for

example, is the conclusion we can draw from the fact that T(n) = pn2 + qn + r

is both O(n2) and �(n2).

There is a notation to express this: if a function T(n) is both O(f (n)) and

�(f (n)), we say that T(n) is �(f (n)). In this case, we say that f (n) is an

asymptotically tight bound for T(n). So, for example, our analysis above shows

that T(n) = pn2 + qn + r is �(n2).

Asymptotically tight bounds on worst-case running times are nice things

to find, since they characterize the worst-case performance of an algorithm

38 Chapter 2 Basics of Algorithm Analysis

precisely up to constant factors. And as the definition of �(·) shows, one can

obtain such bounds by closing the gap between an upper bound and a lower

bound. For example, sometimes you will read a (slightly informally phrased)

sentence such as “An upper bound of O(n3) has been shown on the worst-case

running time of the algorithm, but there is no example known on which the

algorithm runs for more than �(n2) steps.” This is implicitly an invitation to

search for an asymptotically tight bound on the algorithm’s worst-case running

time.

Sometimes one can also obtain an asymptotically tight bound directly by

computing a limit as n goes to infinity. Essentially, if the ratio of functions

f (n) and g(n) converges to a positive constant as n goes to infinity, then

f (n) = �(g(n)).

(2.1) Let f and g be two functions that

lim
n→∞

f (n)

g(n)

exists and is equal to some number c > 0. Then f (n) = �(g(n)).

Proof. We will use the fact that the limit exists and is positive to show that

f (n) = O(g(n)) and f (n) = �(g(n)), as required by the definition of �(·).
Since

lim
n→∞

f (n)

g(n)
= c > 0,

it follows from the definition of a limit that there is some n0 beyond which the

ratio is always between 1
2c and 2c. Thus, f (n) ≤ 2cg(n) for all n ≥ n0, which

implies that f (n) = O(g(n)); and f (n) ≥ 1
2cg(n) for all n ≥ n0, which implies

that f (n) = �(g(n)).

Properties of Asymptotic Growth Rates

Having seen the definitions of O, �, and �, it is useful to explore some of their

basic properties.

Transitivity A first property is transitivity: if a function f is asymptotically

upper-bounded by a function g, and if g in turn is asymptotically upper-

bounded by a function h, then f is asymptotically upper-bounded by h. A

similar property holds for lower bounds. We write this more precisely as

follows.

(2.2)

(a) If f = O(g) and g = O(h), then f = O(h).

(b) If f = �(g) and g = �(h), then f = �(h).

2.2 Asymptotic Order of Growth 39

Proof. We’ll prove part (a) of this claim; the proof of part (b) is very similar.

For (a), we’re given that for some constants c and n0, we have f (n) ≤ cg(n)

for all n ≥ n0. Also, for some (potentially different) constants c′ and n′
0, we

have g(n) ≤ c′h(n) for all n ≥ n′
0. So consider any number n that is at least as

large as both n0 and n′
0. We have f (n) ≤ cg(n) ≤ cc′h(n), and so f (n) ≤ cc′h(n)

for all n ≥ max(n0, n′
0). This latter inequality is exactly what is required for

showing that f = O(h).

Combining parts (a) and (b) of (2.2), we can obtain a similar result

for asymptotically tight bounds. Suppose we know that f = �(g) and that

g = �(h). Then since f = O(g) and g = O(h), we know from part (a) that

f = O(h); since f = �(g) and g = �(h), we know from part (b) that f = �(h).

It follows that f = �(h). Thus we have shown

(2.3) If f = �(g) and g = �(h), then f = �(h).

Sums of Functions It is also useful to have results that quantify the effect of

adding two functions. First, if we have an asymptotic upper bound that applies

to each of two functions f and g, then it applies to their sum.

(2.4) Suppose that f and g are two functions such that for some other function

h, we have f = O(h) and g = O(h). Then f + g = O(h).

Proof. We’re given that for some constants c and n0, we have f (n) ≤ ch(n)

for all n ≥ n0. Also, for some (potentially different) constants c′ and n′
0,

we have g(n) ≤ c′h(n) for all n ≥ n′
0. So consider any number n that is at

least as large as both n0 and n′
0. We have f (n) + g(n) ≤ ch(n) + c′h(n). Thus

f (n) + g(n) ≤ (c + c′)h(n) for all n ≥ max(n0, n′
0), which is exactly what is

required for showing that f + g = O(h).

There is a generalization of this to sums of a fixed constant number of

functions k, where k may be larger than two. The result can be stated precisely

as follows; we omit the proof, since it is essentially the same as the proof of

(2.4), adapted to sums consisting of k terms rather than just two.

(2.5) Let k be a fixed constant, and let f1, f2, . . . , fk and h be functions such

that fi = O(h) for all i. Then f1 + f2 + . . . + fk = O(h).

There is also a consequence of (2.4) that covers the following kind of

situation. It frequently happens that we’re analyzing an algorithm with two

high-level parts, and it is easy to show that one of the two parts is slower

than the other. We’d like to be able to say that the running time of the whole

algorithm is asymptotically comparable to the running time of the slow part.

Since the overall running time is a sum of two functions (the running times of

40 Chapter 2 Basics of Algorithm Analysis

the two parts), results on asymptotic bounds for sums of functions are directly

relevant.

(2.6) Suppose that f and g are two functions (taking nonnegative values)

such that g = O(f). Then f + g = �(f). In other words, f is an asymptotically

tight bound for the combined function f + g.

Proof. Clearly f + g = �(f), since for all n ≥ 0, we have f (n) + g(n) ≥ f (n).

So to complete the proof, we need to show that f + g = O(f).

But this is a direct consequence of (2.4): we’re given the fact that g = O(f),

and also f = O(f) holds for any function, so by (2.4) we have f + g = O(f).

This result also extends to the sum of any fixed, constant number of

functions: the most rapidly growing among the functions is an asymptotically

tight bound for the sum.

Asymptotic Bounds for Some Common Functions

There are a number of functions that come up repeatedly in the analysis of

algorithms, and it is useful to consider the asymptotic properties of some of

the most basic of these: polynomials, logarithms, and exponentials.

Polynomials Recall that a polynomial is a function that can be written in

the form f (n) = a0 + a1n + a2n
2 + . . . + adnd for some integer constant d > 0,

where the final coefficient ad is nonzero. This value d is called the degree of the

polynomial. For example, the functions of the form pn2 + qn + r (with p �= 0)

that we considered earlier are polynomials of degree 2.

A basic fact about polynomials is that their asymptotic rate of growth is

determined by their “high-order term”—the one that determines the degree.

We state this more formally in the following claim. Since we are concerned here

only with functions that take nonnegative values, we will restrict our attention

to polynomials for which the high-order term has a positive coefficient ad > 0.

(2.7) Let f be a polynomial of degree d, in which the coefficient ad is positive.

Then f = O(nd).

Proof. We write f = a0 + a1n + a2n
2 + . . . + adnd, where ad > 0. The upper

bound is a direct application of (2.5). First, notice that coefficients aj for j < d

may be negative, but in any case we have ajn
j ≤ |aj|nd for all n ≥ 1. Thus each

term in the polynomial is O(nd). Since f is a sum of a constant number of

functions, each of which is O(nd), it follows from (2.5) that f is O(nd).

One can also show that under the conditions of (2.7), we have f = �(nd),

and hence it follows that in fact f = �(nd).

2.2 Asymptotic Order of Growth 41

This is a good point at which to discuss the relationship between these

types of asymptotic bounds and the notion of polynomial time, which we

arrived at in the previous section as a way to formalize the more elusive concept

of efficiency. Using O(·) notation, it’s easy to formally define polynomial time:

a polynomial-time algorithm is one whose running time T(n) is O(nd) for some

constant d, where d is independent of the input size.

So algorithms with running-time bounds like O(n2) and O(n3) are

polynomial-time algorithms. But it’s important to realize that an algorithm

can be polynomial time even if its running time is not written as n raised

to some integer power. To begin with, a number of algorithms have running

times of the form O(nx) for some number x that is not an integer. For example,

in Chapter 5 we will see an algorithm whose running time is O(n1.59); we will

also see exponents less than 1, as in bounds like O(
√

n) = O(n1/2).

To take another common kind of example, we will see many algorithms

whose running times have the form O(n log n). Such algorithms are also

polynomial time: as we will see next, log n ≤ n for all n ≥ 1, and hence

n log n ≤ n2 for all n ≥ 1. In other words, if an algorithm has running time

O(n log n), then it also has running time O(n2), and so it is a polynomial-time

algorithm.

Logarithms Recall that logb n is the number x such that bx = n. One way

to get an approximate sense of how fast logb n grows is to note that, if we

round it down to the nearest integer, it is one less than the number of digits

in the base-b representation of the number n. (Thus, for example, 1+ log2 n,

rounded down, is the number of bits needed to represent n.)

So logarithms are very slowly growing functions. In particular, for every

base b, the function logb n is asymptotically bounded by every function of the

form nx, even for (noninteger) values of x arbitrary close to 0.

(2.8) For every b > 1 and every x > 0, we have logb n = O(nx).

One can directly translate between logarithms of different bases using the

following fundamental identity:

loga n =
logb n

logb a
.

This equation explains why you’ll often notice people writing bounds like

O(log n) without indicating the base of the logarithm. This is not sloppy

usage: the identity above says that loga n = 1
logb a

· logb n, so the point is that

loga n = �(logb n), and the base of the logarithm is not important when writing

bounds using asymptotic notation.

42 Chapter 2 Basics of Algorithm Analysis

Exponentials Exponential functions are functions of the form f (n) = rn for

some constant base r. Here we will be concerned with the case in which r > 1,

which results in a very fast-growing function.

In particular, where polynomials raise n to a fixed exponent, exponentials

raise a fixed number to n as a power; this leads to much faster rates of growth.

One way to summarize the relationship between polynomials and exponentials

is as follows.

(2.9) For every r > 1 and every d > 0, we have nd = O(rn).

In particular, every exponential grows faster than every polynomial. And as

we saw in Table 2.1, when you plug in actual values of n, the differences in

growth rates are really quite impressive.

Just as people write O(log n) without specifying the base, you’ll also see

people write “The running time of this algorithm is exponential,” without

specifying which exponential function they have in mind. Unlike the liberal

use of log n, which is justified by ignoring constant factors, this generic use of

the term “exponential” is somewhat sloppy. In particular, for different bases

r > s > 1, it is never the case that rn = �(sn). Indeed, this would require that

for some constant c > 0, we would have rn ≤ csn for all sufficiently large n.

But rearranging this inequality would give (r/s)n ≤ c for all sufficiently large

n. Since r > s, the expression (r/s)n is tending to infinity with n, and so it

cannot possibly remain bounded by a fixed constant c.

So asymptotically speaking, exponential functions are all different. Still,

it’s usually clear what people intend when they inexactly write “The running

time of this algorithm is exponential”—they typically mean that the running

time grows at least as fast as some exponential function, and all exponentials

grow so fast that we can effectively dismiss this algorithm without working out

further details of the exact running time. This is not entirely fair. Occasionally

there’s more going on with an exponential algorithm than first appears, as

we’ll see, for example, in Chapter 10; but as we argued in the first section of

this chapter, it’s a reasonable rule of thumb.

Taken together, then, logarithms, polynomials, and exponentials serve as

useful landmarks in the range of possible functions that you encounter when

analyzing running times. Logarithms grow more slowly than polynomials, and

polynomials grow more slowly than exponentials.

2.3 Implementing the Stable Matching Algorithm
Using Lists and Arrays

We’ve now seen a general approach for expressing bounds on the running

time of an algorithm. In order to asymptotically analyze the running time of

2.3 Implementing the Stable Matching Algorithm Using Lists and Arrays 43

an algorithm expressed in a high-level fashion—as we expressed the Gale-

Shapley Stable Matching algorithm in Chapter 1, for example—one doesn’t

have to actually program, compile, and execute it, but one does have to think

about how the data will be represented and manipulated in an implementation

of the algorithm, so as to bound the number of computational steps it takes.

The implementation of basic algorithms using data structures is something

that you probably have had some experience with. In this book, data structures

will be covered in the context of implementing specific algorithms, and so we

will encounter different data structures based on the needs of the algorithms

we are developing. To get this process started, we consider an implementation

of the Gale-Shapley Stable Matching algorithm; we showed earlier that the

algorithm terminates in at most n2 iterations, and our implementation here

provides a corresponding worst-case running time of O(n2), counting actual

computational steps rather than simply the total number of iterations. To get

such a bound for the Stable Matching algorithm, we will only need to use two

of the simplest data structures: lists and arrays. Thus, our implementation also

provides a good chance to review the use of these basic data structures as well.

In the Stable Matching Problem, each man and each woman has a ranking

of all members of the opposite gender. The very first question we need to

discuss is how such a ranking will be represented. Further, the algorithm

maintains a matching and will need to know at each step which men and

women are free, and who is matched with whom. In order to implement the

algorithm, we need to decide which data structures we will use for all these

things.

An important issue to note here is that the choice of data structure is up

to the algorithm designer; for each algorithm we will choose data structures

that make it efficient and easy to implement. In some cases, this may involve

preprocessing the input to convert it from its given input representation into a

data structure that is more appropriate for the problem being solved.

Arrays and Lists

To start our discussion we will focus on a single list, such as the list of women

in order of preference by a single man. Maybe the simplest way to keep a list

of n elements is to use an array A of length n, and have A[i] be the ith element

of the list. Such an array is simple to implement in essentially all standard

programming languages, and it has the following properties.

. We can answer a query of the form “What is the ith element on the list?”

in O(1) time, by a direct access to the value A[i].

. If we want to determine whether a particular element e belongs to the

list (i.e., whether it is equal to A[i] for some i), we need to check the

44 Chapter 2 Basics of Algorithm Analysis

elements one by one in O(n) time, assuming we don’t know anything

about the order in which the elements appear in A.

. If the array elements are sorted in some clear way (either numerically

or alphabetically), then we can determine whether an element e belongs

to the list in O(log n) time using binary search; we will not need to use

binary search for any part of our stable matching implementation, but

we will have more to say about it in the next section.

An array is less good for dynamically maintaining a list of elements that

changes over time, such as the list of free men in the Stable Matching algorithm;

since men go from being free to engaged, and potentially back again, a list of

free men needs to grow and shrink during the execution of the algorithm. It

is generally cumbersome to frequently add or delete elements to a list that is

maintained as an array.

An alternate, and often preferable, way to maintain such a dynamic set

of elements is via a linked list. In a linked list, the elements are sequenced

together by having each element point to the next in the list. Thus, for each

element v on the list, we need to maintain a pointer to the next element; we

set this pointer to null if i is the last element. We also have a pointer First

that points to the first element. By starting at First and repeatedly following

pointers to the next element until we reach null, we can thus traverse the entire

contents of the list in time proportional to its length.

A generic way to implement such a linked list, when the set of possible

elements may not be fixed in advance, is to allocate a record e for each element

that we want to include in the list. Such a record would contain a field e.val

that contains the value of the element, and a field e.Next that contains a

pointer to the next element in the list. We can create a doubly linked list, which

is traversable in both directions, by also having a field e.Prev that contains

a pointer to the previous element in the list. (e.Prev = null if e is the first

element.) We also include a pointer Last, analogous to First, that points to

the last element in the list. A schematic illustration of part of such a list is

shown in the first line of Figure 2.1.

A doubly linked list can be modified as follows.

. Deletion. To delete the element e from a doubly linked list, we can just

“splice it out” by having the previous element, referenced by e.Prev, and

the next element, referenced by e.Next, point directly to each other. The

deletion operation is illustrated in Figure 2.1.

. Insertion. To insert element e between elements d and f in a list, we

“splice it in” by updating d.Next and f .Prev to point to e, and the Next

and Prev pointers of e to point to d and f , respectively. This operation is

2.3 Implementing the Stable Matching Algorithm Using Lists and Arrays 45

Before deleting e:

val

Element e

val val

After deleting e:

val

Element e

val val

Figure 2.1 A schematic representation of a doubly linked list, showing the deletion of

an element e.

essentially the reverse of deletion, and indeed one can see this operation

at work by reading Figure 2.1 from bottom to top.

Inserting or deleting e at the beginning of the list involves updating the First

pointer, rather than updating the record of the element before e.

While lists are good for maintaining a dynamically changing set, they also

have disadvantages. Unlike arrays, we cannot find the ith element of the list in

O(1) time: to find the ith element, we have to follow the Next pointers starting

from the beginning of the list, which takes a total of O(i) time.

Given the relative advantages and disadvantages of arrays and lists, it may

happen that we receive the input to a problem in one of the two formats and

want to convert it into the other. As discussed earlier, such preprocessing is

often useful; and in this case, it is easy to convert between the array and

list representations in O(n) time. This allows us to freely choose the data

structure that suits the algorithm better and not be constrained by the way

the information is given as input.

Implementing the Stable Matching Algorithm

Next we will use arrays and linked lists to implement the Stable Matching algo-

rithm from Chapter 1. We have already shown that the algorithm terminates in

at most n2 iterations, and this provides a type of upper bound on the running

time. However, if we actually want to implement the G-S algorithm so that it

runs in time proportional to n2, we need to be able to implement each iteration

in constant time. We discuss how to do this now.

For simplicity, assume that the set of men and women are both {1, . . . , n}.
To ensure this, we can order the men and women (say, alphabetically), and

associate number i with the ith man mi or ith women wi in this order. This

46 Chapter 2 Basics of Algorithm Analysis

assumption (or notation) allows us to define an array indexed by all men

or all women. We need to have a preference list for each man and for each

woman. To do this we will have two arrays, one for women’s preference lists

and one for the men’s preference lists; we will use ManPref[m, i] to denote

the ith woman on man m’s preference list, and similarly WomanPref[w, i] to

be the ith man on the preference list of woman w. Note that the amount of

space needed to give the preferences for all 2n individuals is O(n2), as each

person has a list of length n.

We need to consider each step of the algorithm and understand what data

structure allows us to implement it efficiently. Essentially, we need to be able

to do each of four things in constant time.

1. We need to be able to identify a free man.

2. We need, for a man m, to be able to identify the highest-ranked woman

to whom he has not yet proposed.

3. For a woman w, we need to decide if w is currently engaged, and if she

is, we need to identify her current partner.

4. For a woman w and two men m and m′, we need to be able to decide,

again in constant time, which of m or m′ is preferred by w.

First, consider selecting a free man. We will do this by maintaining the set

of free men as a linked list. When we need to select a free man, we take the

first man m on this list. We delete m from the list if he becomes engaged, and

possibly insert a different man m′, if some other man m′ becomes free. In this

case, m′ can be inserted at the front of the list, again in constant time.

Next, consider a man m. We need to identify the highest-ranked woman

to whom he has not yet proposed. To do this we will need to maintain an extra

array Next that indicates for each man m the position of the next woman he

will propose to on his list. We initialize Next[m]= 1 for all men m. If a man m

needs to propose to a woman, he’ll propose to w = ManPref[m,Next[m]], and

once he proposes to w, we increment the value of Next[m] by one, regardless

of whether or not w accepts the proposal.

Now assume man m proposes to woman w; we need to be able to identify

the man m′ that w is engaged to (if there is such a man). We can do this by

maintaining an array Current of length n, where Current[w] is the woman

w’s current partner m′. We set Current[w] to a special null symbol when we

need to indicate that woman w is not currently engaged; at the start of the

algorithm, Current[w] is initialized to this null symbol for all women w.

To sum up, the data structures we have set up thus far can implement the

operations (1)–(3) in O(1) time each.

2.4 A Survey of Common Running Times 47

Maybe the trickiest question is how to maintain women’s preferences to

keep step (4) efficient. Consider a step of the algorithm, when man m proposes

to a woman w. Assume w is already engaged, and her current partner is

m′ =Current[w]. We would like to decide in O(1) time if woman w prefers m

or m′. Keeping the women’s preferences in an array WomanPref, analogous to

the one we used for men, does not work, as we would need to walk through

w’s list one by one, taking O(n) time to find m and m′ on the list. While O(n)

is still polynomial, we can do a lot better if we build an auxiliary data structure

at the beginning.

At the start of the algorithm, we create an n × n array Ranking, where

Ranking[w, m] contains the rank of man m in the sorted order of w’s prefer-

ences. By a single pass through w’s preference list, we can create this array in

linear time for each woman, for a total initial time investment proportional to

n2. Then, to decide which of m or m′ is preferred by w, we simply compare

the values Ranking[w, m] and Ranking[w, m′].

This allows us to execute step (4) in constant time, and hence we have

everything we need to obtain the desired running time.

(2.10) The data structures described above allow us to implement the G-S

algorithm in O(n2) time.

2.4 A Survey of Common Running Times
When trying to analyze a new algorithm, it helps to have a rough sense of

the “landscape” of different running times. Indeed, there are styles of analysis

that recur frequently, and so when one sees running-time bounds like O(n),

O(n log n), and O(n2) appearing over and over, it’s often for one of a very

small number of distinct reasons. Learning to recognize these common styles

of analysis is a long-term goal. To get things under way, we offer the following

survey of common running-time bounds and some of the typical approaches

that lead to them.

Earlier we discussed the notion that most problems have a natural “search

space”—the set of all possible solutions—and we noted that a unifying theme

in algorithm design is the search for algorithms whose performance is more

efficient than a brute-force enumeration of this search space. In approaching a

new problem, then, it often helps to think about two kinds of bounds: one on

the running time you hope to achieve, and the other on the size of the problem’s

natural search space (and hence on the running time of a brute-force algorithm

for the problem). The discussion of running times in this section will begin in

many cases with an analysis of the brute-force algorithm, since it is a useful

48 Chapter 2 Basics of Algorithm Analysis

way to get one’s bearings with respect to a problem; the task of improving on

such algorithms will be our goal in most of the book.

Linear Time

An algorithm that runs in O(n), or linear, time has a very natural property:

its running time is at most a constant factor times the size of the input. One

basic way to get an algorithm with this running time is to process the input

in a single pass, spending a constant amount of time on each item of input

encountered. Other algorithms achieve a linear time bound for more subtle

reasons. To illustrate some of the ideas here, we consider two simple linear-

time algorithms as examples.

Computing the Maximum Computing the maximum of n numbers, for ex-

ample, can be performed in the basic “one-pass” style. Suppose the numbers

are provided as input in either a list or an array. We process the numbers

a1, a2, . . . , an in order, keeping a running estimate of the maximum as we go.

Each time we encounter a number ai, we check whether ai is larger than our

current estimate, and if so we update the estimate to ai.

max = a1

For i = 2 to n

If ai > max then

set max = ai

Endif

Endfor

In this way, we do constant work per element, for a total running time of O(n).

Sometimes the constraints of an application force this kind of one-pass

algorithm on you—for example, an algorithm running on a high-speed switch

on the Internet may see a stream of packets flying past it, and it can try

computing anything it wants to as this stream passes by, but it can only perform

a constant amount of computational work on each packet, and it can’t save

the stream so as to make subsequent scans through it. Two different subareas

of algorithms, online algorithms and data stream algorithms, have developed

to study this model of computation.

Merging Two Sorted Lists Often, an algorithm has a running time of O(n),

but the reason is more complex. We now describe an algorithm for merging

two sorted lists that stretches the one-pass style of design just a little, but still

has a linear running time.

Suppose we are given two lists of n numbers each, a1, a2, . . . , an and

b1, b2, . . . , bn, and each is already arranged in ascending order. We’d like to

2.4 A Survey of Common Running Times 49

merge these into a single list c1, c2, . . . , c2n that is also arranged in ascending

order. For example, merging the lists 2, 3, 11, 19 and 4, 9, 16, 25 results in the

output 2, 3, 4, 9, 11, 16, 19, 25.

To do this, we could just throw the two lists together, ignore the fact that

they’re separately arranged in ascending order, and run a sorting algorithm.

But this clearly seems wasteful; we’d like to make use of the existing order in

the input. One way to think about designing a better algorithm is to imagine

performing the merging of the two lists by hand: suppose you’re given two

piles of numbered cards, each arranged in ascending order, and you’d like to

produce a single ordered pile containing all the cards. If you look at the top

card on each stack, you know that the smaller of these two should go first on

the output pile; so you could remove this card, place it on the output, and now

iterate on what’s left.

In other words, we have the following algorithm.

To merge sorted lists A = a1, . . . , an and B = b1, . . . , bn:

Maintain a Current pointer into each list, initialized to

point to the front elements

While both lists are nonempty:

Let ai and bj be the elements pointed to by the Current pointer

Append the smaller of these two to the output list

Advance the Current pointer in the list from which the

smaller element was selected

EndWhile

Once one list is empty, append the remainder of the other list

to the output

See Figure 2.2 for a picture of this process.

Merged result

Append the smaller of

ai and bj to the output.

bj///

ai

B

A//////

Figure 2.2 To merge sorted lists A and B, we repeatedly extract the smaller item from

the front of the two lists and append it to the output.

50 Chapter 2 Basics of Algorithm Analysis

Now, to show a linear-time bound, one is tempted to describe an argument

like what worked for the maximum-finding algorithm: “We do constant work

per element, for a total running time of O(n).” But it is actually not true that

we do only constant work per element. Suppose that n is an even number, and

consider the lists A = 1, 3, 5, . . . , 2n − 1 and B = n, n + 2, n + 4, . . . , 3n − 2.

The number b1 at the front of list B will sit at the front of the list for n/2

iterations while elements from A are repeatedly being selected, and hence

it will be involved in �(n) comparisons. Now, it is true that each element

can be involved in at most O(n) comparisons (at worst, it is compared with

each element in the other list), and if we sum this over all elements we get

a running-time bound of O(n2). This is a correct bound, but we can show

something much stronger.

The better way to argue is to bound the number of iterations of the While

loop by an “accounting” scheme. Suppose we charge the cost of each iteration

to the element that is selected and added to the output list. An element can

be charged only once, since at the moment it is first charged, it is added

to the output and never seen again by the algorithm. But there are only 2n

elements total, and the cost of each iteration is accounted for by a charge to

some element, so there can be at most 2n iterations. Each iteration involves a

constant amount of work, so the total running time is O(n), as desired.

While this merging algorithm iterated through its input lists in order, the

“interleaved” way in which it processed the lists necessitated a slightly subtle

running-time analysis. In Chapter 3 we will see linear-time algorithms for

graphs that have an even more complex flow of control: they spend a constant

amount of time on each node and edge in the underlying graph, but the order

in which they process the nodes and edges depends on the structure of the

graph.

O(n log n) Time

O(n log n) is also a very common running time, and in Chapter 5 we will

see one of the main reasons for its prevalence: it is the running time of any

algorithm that splits its input into two equal-sized pieces, solves each piece

recursively, and then combines the two solutions in linear time.

Sorting is perhaps the most well-known example of a problem that can be

solved this way. Specifically, the Mergesort algorithm divides the set of input

numbers into two equal-sized pieces, sorts each half recursively, and then

merges the two sorted halves into a single sorted output list. We have just

seen that the merging can be done in linear time; and Chapter 5 will discuss

how to analyze the recursion so as to get a bound of O(n log n) on the overall

running time.

2.4 A Survey of Common Running Times 51

One also frequently encounters O(n log n) as a running time simply be-

cause there are many algorithms whose most expensive step is to sort the

input. For example, suppose we are given a set of n time-stamps x1, x2, . . . , xn

on which copies of a file arrived at a server, and we’d like to find the largest

interval of time between the first and last of these time-stamps during which

no copy of the file arrived. A simple solution to this problem is to first sort the

time-stamps x1, x2, . . . , xn and then process them in sorted order, determining

the sizes of the gaps between each number and its successor in ascending

order. The largest of these gaps is the desired subinterval. Note that this algo-

rithm requires O(n log n) time to sort the numbers, and then it spends constant

work on each number in ascending order. In other words, the remainder of the

algorithm after sorting follows the basic recipe for linear time that we discussed

earlier.

Quadratic Time

Here’s a basic problem: suppose you are given n points in the plane, each

specified by (x, y) coordinates, and you’d like to find the pair of points that

are closest together. The natural brute-force algorithm for this problem would

enumerate all pairs of points, compute the distance between each pair, and

then choose the pair for which this distance is smallest.

What is the running time of this algorithm? The number of pairs of points

is
(n

2

)

= n(n−1)
2 , and since this quantity is bounded by 1

2n2, it is O(n2). More

crudely, the number of pairs is O(n2) because we multiply the number of

ways of choosing the first member of the pair (at most n) by the number

of ways of choosing the second member of the pair (also at most n). The

distance between points (xi, yi) and (xj , yj) can be computed by the formula
√

(xi − xj)
2 + (yi − yj)

2 in constant time, so the overall running time is O(n2).

This example illustrates a very common way in which a running time of O(n2)

arises: performing a search over all pairs of input items and spending constant

time per pair.

Quadratic time also arises naturally from a pair of nested loops: An algo-

rithm consists of a loop with O(n) iterations, and each iteration of the loop

launches an internal loop that takes O(n) time. Multiplying these two factors

of n together gives the running time.

The brute-force algorithm for finding the closest pair of points can be

written in an equivalent way with two nested loops:

For each input point (xi , yi)

For each other input point (xj , yj)

Compute distance d =
√

(xi − xj)
2 + (yi − yj)

2

52 Chapter 2 Basics of Algorithm Analysis

If d is less than the current minimum, update minimum to d

Endfor

Endfor

Note how the “inner” loop, over (xj , yj), has O(n) iterations, each taking

constant time; and the “outer” loop, over (xi, yi), has O(n) iterations, each

invoking the inner loop once.

It’s important to notice that the algorithm we’ve been discussing for the

Closest-Pair Problem really is just the brute-force approach: the natural search

space for this problem has size O(n2), and we’re simply enumerating it. At

first, one feels there is a certain inevitability about this quadratic algorithm—

we have to measure all the distances, don’t we?—but in fact this is an illusion.

In Chapter 5 we describe a very clever algorithm that finds the closest pair of

points in the plane in only O(n log n) time, and in Chapter 13 we show how

randomization can be used to reduce the running time to O(n).

Cubic Time

More elaborate sets of nested loops often lead to algorithms that run in

O(n3) time. Consider, for example, the following problem. We are given sets

S1, S2, . . . , Sn, each of which is a subset of {1, 2, . . . , n}, and we would like

to know whether some pair of these sets is disjoint—in other words, has no

elements in common.

What is the running time needed to solve this problem? Let’s suppose that

each set Si is represented in such a way that the elements of Si can be listed in

constant time per element, and we can also check in constant time whether a

given number p belongs to Si. The following is a direct way to approach the

problem.

For pair of sets Si and Sj

Determine whether Si and Sj have an element in common

Endfor

This is a concrete algorithm, but to reason about its running time it helps to

open it up (at least conceptually) into three nested loops.

For each set Si

For each other set Sj

For each element p of Si

Determine whether p also belongs to Sj

Endfor

If no element of Si belongs to Sj then

2.4 A Survey of Common Running Times 53

Report that Si and Sj are disjoint

Endif

Endfor

Endfor

Each of the sets has maximum size O(n), so the innermost loop takes time

O(n). Looping over the sets Sj involves O(n) iterations around this innermost

loop; and looping over the sets Si involves O(n) iterations around this. Multi-

plying these three factors of n together, we get the running time of O(n3).

For this problem, there are algorithms that improve on O(n3) running

time, but they are quite complicated. Furthermore, it is not clear whether

the improved algorithms for this problem are practical on inputs of reasonable

size.

O(nk) Time

In the same way that we obtained a running time of O(n2) by performing brute-

force search over all pairs formed from a set of n items, we obtain a running

time of O(nk) for any constant k when we search over all subsets of size k.

Consider, for example, the problem of finding independent sets in a graph,

which we discussed in Chapter 1. Recall that a set of nodes is independent

if no two are joined by an edge. Suppose, in particular, that for some fixed

constant k, we would like to know if a given n-node input graph G has an

independent set of size k. The natural brute-force algorithm for this problem

would enumerate all subsets of k nodes, and for each subset S it would check

whether there is an edge joining any two members of S. That is,

For each subset S of k nodes

Check whether S constitutes an independent set

If S is an independent set then

Stop and declare success

Endif

Endfor

If no k-node independent set was found then

Declare failure

Endif

To understand the running time of this algorithm, we need to consider two

quantities. First, the total number of k-element subsets in an n-element set is

(

n

k

)

= n(n − 1)(n − 2) . . . (n − k + 1)

k(k − 1)(k − 2) . . . (2)(1)
≤ nk

k!
.

54 Chapter 2 Basics of Algorithm Analysis

Since we are treating k as a constant, this quantity is O(nk). Thus, the outer

loop in the algorithm above will run for O(nk) iterations as it tries all k-node

subsets of the n nodes of the graph.

Inside this loop, we need to test whether a given set S of k nodes constitutes

an independent set. The definition of an independent set tells us that we need

to check, for each pair of nodes, whether there is an edge joining them. Hence

this is a search over pairs, like we saw earlier in the discussion of quadratic

time; it requires looking at
(k
2

)

, that is, O(k2), pairs and spending constant time

on each.

Thus the total running time is O(k2nk). Since we are treating k as a constant

here, and since constants can be dropped in O(·) notation, we can write this

running time as O(nk).

Independent Set is a principal example of a problem believed to be compu-

tationally hard, and in particular it is believed that no algorithm to find k-node

independent sets in arbitrary graphs can avoid having some dependence on k

in the exponent. However, as we will discuss in Chapter 10 in the context of

a related problem, even once we’ve conceded that brute-force search over k-

element subsets is necessary, there can be different ways of going about this

that lead to significant differences in the efficiency of the computation.

Beyond Polynomial Time

The previous example of the Independent Set Problem starts us rapidly down

the path toward running times that grow faster than any polynomial. In

particular, two kinds of bounds that come up very frequently are 2n and n!,

and we now discuss why this is so.

Suppose, for example, that we are given a graph and want to find an

independent set of maximum size (rather than testing for the existence of one

with a given number of nodes). Again, people don’t know of algorithms that

improve significantly on brute-force search, which in this case would look as

follows.

For each subset S of nodes

Check whether S constitutes an independent set

If S is a larger independent set than the largest seen so far then

Record the size of S as the current maximum

Endif

Endfor

This is very much like the brute-force algorithm for k-node independent sets,

except that now we are iterating over all subsets of the graph. The total number

2.4 A Survey of Common Running Times 55

of subsets of an n-element set is 2n, and so the outer loop in this algorithm

will run for 2n iterations as it tries all these subsets. Inside the loop, we are

checking all pairs from a set S that can be as large as n nodes, so each iteration

of the loop takes at most O(n2) time. Multiplying these two together, we get a

running time of O(n22n).

Thus see that 2n arises naturally as a running time for a search algorithm

that must consider all subsets. In the case of Independent Set, something

at least nearly this inefficient appears to be necessary; but it’s important

to keep in mind that 2n is the size of the search space for many problems,

and for many of them we will be able to find highly efficient polynomial-

time algorithms. For example, a brute-force search algorithm for the Interval

Scheduling Problem that we saw in Chapter 1 would look very similar to the

algorithm above: try all subsets of intervals, and find the largest subset that has

no overlaps. But in the case of the Interval Scheduling Problem, as opposed

to the Independent Set Problem, we will see (in Chapter 4) how to find an

optimal solution in O(n log n) time. This is a recurring kind of dichotomy in

the study of algorithms: two algorithms can have very similar-looking search

spaces, but in one case you’re able to bypass the brute-force search algorithm,

and in the other you aren’t.

The function n! grows even more rapidly than 2n, so it’s even more

menacing as a bound on the performance of an algorithm. Search spaces of

size n! tend to arise for one of two reasons. First, n! is the number of ways to

match up n items with n other items—for example, it is the number of possible

perfect matchings of n men with n women in an instance of the Stable Matching

Problem. To see this, note that there are n choices for how we can match up

the first man; having eliminated this option, there are n − 1choices for how we

can match up the second man; having eliminated these two options, there are

n − 2 choices for how we can match up the third man; and so forth. Multiplying

all these choices out, we get n(n − 1)(n − 2) . . . (2)(1) = n!

Despite this enormous set of possible solutions, we were able to solve

the Stable Matching Problem in O(n2) iterations of the proposal algorithm.

In Chapter 7, we will see a similar phenomenon for the Bipartite Matching

Problem we discussed earlier; if there are n nodes on each side of the given

bipartite graph, there can be up to n! ways of pairing them up. However, by

a fairly subtle search algorithm, we will be able to find the largest bipartite

matching in O(n3) time.

The function n! also arises in problems where the search space consists

of all ways to arrange n items in order. A basic problem in this genre is the

Traveling Salesman Problem: given a set of n cities, with distances between

all pairs, what is the shortest tour that visits all cities? We assume that the

salesman starts and ends at the first city, so the crux of the problem is the

56 Chapter 2 Basics of Algorithm Analysis

implicit search over all orders of the remaining n − 1 cities, leading to a search

space of size (n − 1)!. In Chapter 8, we will see that Traveling Salesman

is another problem that, like Independent Set, belongs to the class of NP-

complete problems and is believed to have no efficient solution.

Sublinear Time

Finally, there are cases where one encounters running times that are asymp-

totically smaller than linear. Since it takes linear time just to read the input,

these situations tend to arise in a model of computation where the input can be

“queried” indirectly rather than read completely, and the goal is to minimize

the amount of querying that must be done.

Perhaps the best-known example of this is the binary search algorithm.

Given a sorted array A of n numbers, we’d like to determine whether a given

number p belongs to the array. We could do this by reading the entire array,

but we’d like to do it much more efficiently, taking advantage of the fact that

the array is sorted, by carefully probing particular entries. In particular, we

probe the middle entry of A and get its value—say it is q—and we compare q

to p. If q = p, we’re done. If q > p, then in order for p to belong to the array

A, it must lie in the lower half of A; so we ignore the upper half of A from

now on and recursively apply this search in the lower half. Finally, if q < p,

then we apply the analogous reasoning and recursively search in the upper

half of A.

The point is that in each step, there’s a region of A where p might possibly

be; and we’re shrinking the size of this region by a factor of two with every

probe. So how large is the “active” region of A after k probes? It starts at size

n, so after k probes it has size at most (1
2)kn.

Given this, how long will it take for the size of the active region to be

reduced to a constant? We need k to be large enough so that (1
2)k = O(1/n),

and to do this we can choose k = log2 n. Thus, when k = log2 n, the size of

the active region has been reduced to a constant, at which point the recursion

bottoms out and we can search the remainder of the array directly in constant

time.

So the running time of binary search is O(log n), because of this successive

shrinking of the search region. In general, O(log n) arises as a time bound

whenever we’re dealing with an algorithm that does a constant amount of

work in order to throw away a constant fraction of the input. The crucial fact

is that O(log n) such iterations suffice to shrink the input down to constant

size, at which point the problem can generally be solved directly.

2.5 A More Complex Data Structure: Priority Queues 57

2.5 A More Complex Data Structure:
Priority Queues

Our primary goal in this book was expressed at the outset of the chapter:

we seek algorithms that improve qualitatively on brute-force search, and in

general we use polynomial-time solvability as the concrete formulation of

this. Typically, achieving a polynomial-time solution to a nontrivial problem

is not something that depends on fine-grained implementation details; rather,

the difference between exponential and polynomial is based on overcoming

higher-level obstacles. Once one has an efficient algorithm to solve a problem,

however, it is often possible to achieve further improvements in running time

by being careful with the implementation details, and sometimes by using

more complex data structures.

Some complex data structures are essentially tailored for use in a single

kind of algorithm, while others are more generally applicable. In this section,

we describe one of the most broadly useful sophisticated data structures,

the priority queue. Priority queues will be useful when we describe how to

implement some of the graph algorithms developed later in the book. For our

purposes here, it is a useful illustration of the analysis of a data structure that,

unlike lists and arrays, must perform some nontrivial processing each time it

is invoked.

The Problem

In the implementation of the Stable Matching algorithm in Section 2.3, we

discussed the need to maintain a dynamically changing set S (such as the set

of all free men in that case). In such situations, we want to be able to add

elements to and delete elements from the set S, and we want to be able to

select an element from S when the algorithm calls for it. A priority queue is

designed for applications in which elements have a priority value, or key, and

each time we need to select an element from S, we want to take the one with

highest priority.

A priority queue is a data structure that maintains a set of elements S,

where each element v ∈ S has an associated value key(v) that denotes the

priority of element v; smaller keys represent higher priorities. Priority queues

support the addition and deletion of elements from the set, and also the

selection of the element with smallest key. Our implementation of priority

queues will also support some additional operations that we summarize at the

end of the section.

A motivating application for priority queues, and one that is useful to keep

in mind when considering their general function, is the problem of managing

58 Chapter 2 Basics of Algorithm Analysis

real-time events such as the scheduling of processes on a computer. Each

process has a priority, or urgency, but processes do not arrive in order of

their priorities. Rather, we have a current set of active processes, and we want

to be able to extract the one with the currently highest priority and run it.

We can maintain the set of processes in a priority queue, with the key of a

process representing its priority value. Scheduling the highest-priority process

corresponds to selecting the element with minimum key from the priority

queue; concurrent with this, we will also be inserting new processes as they

arrive, according to their priority values.

How efficiently do we hope to be able to execute the operations in a priority

queue? We will show how to implement a priority queue containing at most

n elements at any time so that elements can be added and deleted, and the

element with minimum key selected, in O(log n) time per operation.

Before discussing the implementation, let us point out a very basic appli-

cation of priority queues that highlights why O(log n) time per operation is

essentially the “right” bound to aim for.

(2.11) A sequence of O(n) priority queue operations can be used to sort a set

of n numbers.

Proof. Set up a priority queue H, and insert each number into H with its value

as a key. Then extract the smallest number one by one until all numbers have

been extracted; this way, the numbers will come out of the priority queue in

sorted order.

Thus, with a priority queue that can perform insertion and the extraction

of minima in O(log n) per operation, we can sort n numbers in O(n log n)

time. It is known that, in a comparison-based model of computation (when

each operation accesses the input only by comparing a pair of numbers),

the time needed to sort must be at least proportional to n log n, so (2.11)

highlights a sense in which O(log n) time per operation is the best we can

hope for. We should note that the situation is a bit more complicated than

this: implementations of priority queues more sophisticated than the one we

present here can improve the running time needed for certain operations, and

add extra functionality. But (2.11) shows that any sequence of priority queue

operations that results in the sorting of n numbers must take time at least

proportional to n log n in total.

A Data Structure for Implementing a Priority Queue

We will use a data structure called a heap to implement a priority queue.

Before we discuss the structure of heaps, we should consider what happens

with some simpler, more natural approaches to implementing the functions

2.5 A More Complex Data Structure: Priority Queues 59

of a priority queue. We could just have the elements in a list, and separately

have a pointer labeled Min to the one with minimum key. This makes adding

new elements easy, but extraction of the minimum hard. Specifically, finding

the minimum is quick—we just consult the Min pointer—but after removing

this minimum element, we need to update the Min pointer to be ready for the

next operation, and this would require a scan of all elements in O(n) time to

find the new minimum.

This complication suggests that we should perhaps maintain the elements

in the sorted order of the keys. This makes it easy to extract the element with

smallest key, but now how do we add a new element to our set? Should we

have the elements in an array, or a linked list? Suppose we want to add s

with key value key(s). If the set S is maintained as a sorted array, we can use

binary search to find the array position where s should be inserted in O(log n)

time, but to insert s in the array, we would have to move all later elements

one position to the right. This would take O(n) time. On the other hand, if we

maintain the set as a sorted doubly linked list, we could insert it in O(1) time

into any position, but the doubly linked list would not support binary search,

and hence we may need up to O(n) time to find the position where s should

be inserted.

The Definition of a Heap So in all these simple approaches, at least one of

the operations can take up to O(n) time—much more than the O(log n) per

operation that we’re hoping for. This is where heaps come in. The heap data

structure combines the benefits of a sorted array and list for purposes of this

application. Conceptually, we think of a heap as a balanced binary tree as

shown on the left of Figure 2.3. The tree will have a root, and each node can

have up to two children, a left and a right child. The keys in such a binary tree

are said to be in heap order if the key of any element is at least as large as the

key of the element at its parent node in the tree. In other words,

Heap order: For every element v, at a node i, the element w at i’s parent

satisfies key(w) ≤ key(v).

In Figure 2.3 the numbers in the nodes are the keys of the corresponding

elements.

Before we discuss how to work with a heap, we need to consider what data

structure should be used to represent it. We can use pointers: each node at the

heap could keep the element it stores, its key, and three pointers pointing to

the two children and the parent of the heap node. We can avoid using pointers,

however, if a bound N is known in advance on the total number of elements

that will ever be in the heap at any one time. Such heaps can be maintained

in an array H indexed by i = 1, . . . , N. We will think of the heap nodes as

corresponding to the positions in this array. H[1] is the root, and for any node

60 Chapter 2 Basics of Algorithm Analysis

1

2 5

10 3 117

15 17 20 9 15 8 16

1 2 5 10 3 117 15 17 20 9 15 8 16 X

Each node’s key is at least

as large as its parent’s.

Figure 2.3 Values in a heap shown as a binary tree on the left, and represented as an

array on the right. The arrows show the children for the top three nodes in the tree.

at position i, the children are the nodes at positions leftChild(i) = 2i and

rightChild(i) = 2i + 1. So the two children of the root are at positions 2 and

3, and the parent of a node at position i is at position parent(i) = ⌊i/2⌋. If

the heap has n < N elements at some time, we will use the first n positions

of the array to store the n heap elements, and use length(H) to denote the

number of elements in H. This representation keeps the heap balanced at all

times. See the right-hand side of Figure 2.3 for the array representation of the

heap on the left-hand side.

Implementing the Heap Operations

The heap element with smallest key is at the root, so it takes O(1) time to

identify the minimal element. How do we add or delete heap elements? First

consider adding a new heap element v, and assume that our heap H has n < N

elements so far. Now it will have n + 1 elements. To start with, we can add the

new element v to the final position i = n + 1, by setting H[i]= v. Unfortunately,

this does not maintain the heap property, as the key of element v may be

smaller than the key of its parent. So we now have something that is almost a

heap, except for a small “damaged” part where v was pasted on at the end.

We will use the procedure Heapify-up to fix our heap. Let j = parent(i) =
⌊i/2⌋ be the parent of the node i, and assume H[j]= w. If key[v]< key[w],

then we will simply swap the positions of v and w. This will fix the heap

property at position i, but the resulting structure will possibly fail to satisfy

the heap property at position j—in other words, the site of the “damage” has

moved upward from i to j. We thus call the process recursively from position

2.5 A More Complex Data Structure: Priority Queues 61

2

4 5

10 9 117

15 17 20 17 15 8 16 3

w

v

v

w

2

4 5

10 9 37

15 17 20 17 15 8 16 11

The Heapify-up process is moving

element v toward the root.

Figure 2.4 The Heapify-up process. Key 3 (at position 16) is too small (on the left).

After swapping keys 3 and 11, the heap violation moves one step closer to the root of

the tree (on the right).

j = parent(i) to continue fixing the heap by pushing the damaged part upward.

Figure 2.4 shows the first two steps of the process after an insertion.

Heapify-up(H,i):

If i > 1 then

let j = parent(i) = ⌊i/2⌋
If key[H[i]]<key[H[j]] then

swap the array entries H[i] and H[j]

Heapify-up(H,j)

Endif

Endif

To see why Heapify-up works, eventually restoring the heap order, it

helps to understand more fully the structure of our slightly damaged heap in

the middle of this process. Assume that H is an array, and v is the element in

position i. We say that H is almost a heap with the key of H[i] too small, if there

is a value α ≥ key(v) such that raising the value of key(v) to α would make

the resulting array satisfy the heap property. (In other words, element v in H[i]

is too small, but raising it to α would fix the problem.) One important point

to note is that if H is almost a heap with the key of the root (i.e., H[1]) too

small, then in fact it is a heap. To see why this is true, consider that if raising

the value of H[1] to α would make H a heap, then the value of H[1] must

also be smaller than both its children, and hence it already has the heap-order

property.

62 Chapter 2 Basics of Algorithm Analysis

(2.12) The procedure Heapify-up(H , i) fixes the heap property in O(log i)

time, assuming that the array H is almost a heap with the key of H[i] too small.

Using Heapify-up we can insert a new element in a heap of n elements in

O(log n) time.

Proof. We prove the statement by induction on i. If i = 1 there is nothing to

prove, since we have already argued that in this case H is actually a heap.

Now consider the case in which i > 1: Let v = H[i], j = parent(i), w = H[j],

and β = key(w). Swapping elements v and w takes O(1) time. We claim that

after the swap, the array H is either a heap or almost a heap with the key of

H[j] (which now holds v) too small. This is true, as setting the key value at

node j to β would make H a heap.

So by the induction hypothesis, applying Heapify-up(j) recursively will

produce a heap as required. The process follows the tree-path from position i

to the root, so it takes O(log i) time.

To insert a new element in a heap, we first add it as the last element. If the

new element has a very large key value, then the array is a heap. Otherwise,

it is almost a heap with the key value of the new element too small. We use

Heapify-up to fix the heap property.

Now consider deleting an element. Many applications of priority queues

don’t require the deletion of arbitrary elements, but only the extraction of

the minimum. In a heap, this corresponds to identifying the key at the root

(which will be the minimum) and then deleting it; we will refer to this oper-

ation as ExtractMin(H). Here we will implement a more general operation

Delete(H , i), which will delete the element in position i. Assume the heap

currently has n elements. After deleting the element H[i], the heap will have

only n − 1 elements; and not only is the heap-order property violated, there

is actually a “hole” at position i, since H[i] is now empty. So as a first step,

to patch the hole in H, we move the element w in position n to position i.

After doing this, H at least has the property that its n − 1 elements are in the

first n − 1 positions, as required, but we may well still not have the heap-order

property.

However, the only place in the heap where the order might be violated is

position i, as the key of element w may be either too small or too big for the

position i. If the key is too small (that is, the violation of the heap property is

between node i and its parent), then we can use Heapify-up(i) to reestablish

the heap order. On the other hand, if key[w] is too big, the heap property

may be violated between i and one or both of its children. In this case, we will

use a procedure called Heapify-down, closely analogous to Heapify-up, that

2.5 A More Complex Data Structure: Priority Queues 63

4

7 21

10 16 117

15 17 20 17 15 8 16

The Heapify-down process

is moving element w down,

toward the leaves.

w

4

7 7

10 16 1121

15 17 20 17 15 8 16

w

Figure 2.5 The Heapify-down process:. Key 21 (at position 3) is too big (on the left).

After swapping keys 21 and 7, the heap violation moves one step closer to the bottom

of the tree (on the right).

swaps the element at position i with one of its children and proceeds down

the tree recursively. Figure 2.5 shows the first steps of this process.

Heapify-down(H,i):

Let n = length(H)

If 2i > n then

Terminate with H unchanged

Else if 2i < n then

Let left= 2i, and right= 2i + 1

Let j be the index that minimizes key[H[left]] and key[H[right]]

Else if 2i = n then

Let j = 2i

Endif

If key[H[j]] < key[H[i]] then

swap the array entries H[i] and H[j]

Heapify-down(H , j)

Endif

Assume that H is an array and w is the element in position i. We say that

H is almost a heap with the key of H[i] too big, if there is a value α ≤ key(w)

such that lowering the value of key(w) to α would make the resulting array

satisfy the heap property. Note that if H[i] corresponds to a leaf in the heap

(i.e., it has no children), and H is almost a heap with H[i] too big, then in fact

H is a heap. Indeed, if lowering the value in H[i] would make H a heap, then

64 Chapter 2 Basics of Algorithm Analysis

H[i] is already larger than its parent and hence it already has the heap-order

property.

(2.13) The procedure Heapify-down(H , i) fixes the heap property in O(log n)

time, assuming that H is almost a heap with the key value of H[i] too big. Using

Heapify-up or Heapify-down we can delete a new element in a heap of n

elements in O(log n) time.

Proof. We prove that the process fixes the heap by reverse induction on the

value i. Let n be the number of elements in the heap. If 2i > n, then, as we

just argued above, H is a heap and hence there is nothing to prove. Otherwise,

let j be the child of i with smaller key value, and let w = H[j]. Swapping the

array elements w and v takes O(1) time. We claim that the resulting array is

either a heap or almost a heap with H[j]= v too big. This is true as setting

key(v) = key(w) would make H a heap. Now j ≥ 2i, so by the induction

hypothesis, the recursive call to Heapify-down fixes the heap property.

The algorithm repeatedly swaps the element originally at position i down,

following a tree-path, so in O(log n) iterations the process results in a heap.

To use the process to remove an element v = H[i]from the heap, we replace

H[i] with the last element in the array, H[n]= w. If the resulting array is not a

heap, it is almost a heap with the key value of H[i] either too small or too big.

We use Heapify-down or Heapify-down to fix the heap property in O(log n)

time.

Implementing Priority Queues with Heaps

The heap data structure with the Heapify-down and Heapify-up operations

can efficiently implement a priority queue that is constrained to hold at most

N elements at any point in time. Here we summarize the operations we will

use.

. StartHeap(N) returns an empty heap H that is set up to store at most N

elements. This operation takes O(N) time, as it involves initializing the

array that will hold the heap.

. Insert(H , v) inserts the item v into heap H. If the heap currently has n

elements, this takes O(log n) time.

. FindMin(H) identifies the minimum element in the heap H but does not

remove it. This takes O(1) time.

. Delete(H , i) deletes the element in heap position i. This is implemented

in O(log n) time for heaps that have n elements.

. ExtractMin(H) identifies and deletes an element with minimum key

value from a heap. This is a combination of the preceding two operations,

and so it takes O(log n) time.

Solved Exercises 65

There is a second class of operations in which we want to operate on

elements by name, rather than by their position in the heap. For example, in

a number of graph algorithms that use heaps, the heap elements are nodes of

the graph with key values that are computed during the algorithm. At various

points in these algorithms, we want to operate on a particular node, regardless

of where it happens to be in the heap.

To be able to access given elements of the priority queue efficiently, we

simply maintain an additional array Position that stores the current position

of each element (each node) in the heap. We can now implement the following

further operations.

. To delete the element v, we apply Delete(H ,Position[v]). Maintaining

this array does not increase the overall running time, and so we can

delete an element v from a heap with n nodes in O(log n) time.

. An additional operation that is used by some algorithms is ChangeKey

(H , v, α), which changes the key value of element v to key(v) = α. To

implement this operation in O(log n) time, we first need to be able to

identify the position of element v in the array, which we do by using

the array Position. Once we have identified the position of element v,

we change the key and then apply Heapify-up or Heapify-down as

appropriate.

Solved Exercises

Solved Exercise 1

Take the following list of functions and arrange them in ascending order of

growth rate. That is, if function g(n) immediately follows function f (n) in

your list, then it should be the case that f (n) is O(g(n)).

f1(n) = 10n

f2(n) = n1/3

f3(n) = nn

f4(n) = log2 n

f5(n) = 2
√

log2 n

Solution We can deal with functions f1, f2, and f4 very easily, since they

belong to the basic families of exponentials, polynomials, and logarithms.

In particular, by (2.8), we have f4(n) = O(f2(n)); and by (2.9), we have

f2(n) = O(f1(n)).

66 Chapter 2 Basics of Algorithm Analysis

Now, the function f3 isn’t so hard to deal with. It starts out smaller than

10n, but once n ≥ 10, then clearly 10n ≤ nn. This is exactly what we need for

the definition of O(·) notation: for all n ≥ 10, we have 10n ≤ cnn, where in this

case c = 1, and so 10n = O(nn).

Finally, we come to function f5, which is admittedly kind of strange-

looking. A useful rule of thumb in such situations is to try taking logarithms

to see whether this makes things clearer. In this case, log2 f5(n) =
√

log2 n =
(log2 n)1/2. What do the logarithms of the other functions look like? log f4(n) =
log2 log2 n, while log f2(n) = 1

3 log2 n. All of these can be viewed as functions

of log2 n, and so using the notation z = log2 n, we can write

log f2(n) = 1

3
z

log f4(n) = log2 z

log f5(n) = z1/2

Now it’s easier to see what’s going on. First, for z ≥ 16, we have log2 z ≤
z1/2. But the condition z ≥ 16 is the same as n ≥ 216 = 65, 536; thus once

n ≥ 216 we have log f4(n) ≤ log f5(n), and so f4(n) ≤ f5(n). Thus we can write

f4(n) = O(f5(n)). Similarly we have z1/2 ≤ 1
3z once z ≥ 9—in other words,

once n ≥ 29 = 512. For n above this bound we have log f5(n) ≤ log f2(n) and

hence f5(n) ≤ f2(n), and so we can write f5(n) = O(f2(n)). Essentially, we

have discovered that 2
√

log2 n is a function whose growth rate lies somewhere

between that of logarithms and polynomials.

Since we have sandwiched f5 between f4 and f2, this finishes the task of

putting the functions in order.

Solved Exercise 2

Let f and g be two functions that take nonnegative values, and suppose that

f = O(g). Show that g = �(f).

Solution This exercise is a way to formalize the intuition that O(·) and �(·)
are in a sense opposites. It is, in fact, not difficult to prove; it is just a matter

of unwinding the definitions.

We’re given that, for some constants c and n0, we have f (n) ≤ cg(n) for

all n ≥ n0. Dividing both sides by c, we can conclude that g(n) ≥ 1
c f (n) for

all n ≥ n0. But this is exactly what is required to show that g = �(f): we have

established that g(n) is at least a constant multiple of f (n) (where the constant

is 1
c), for all sufficiently large n (at least n0).

Exercises 67

Exercises

1. Suppose you have algorithms with the five running times listed below.

(Assume these are the exact running times.) How much slower do each of

these algorithms get when you (a) double the input size, or (b) increase

the input size by one?

(a) n2

(b) n3

(c) 100n2

(d) n log n

(e) 2n

2. Suppose you have algorithms with the six running times listed below.

(Assume these are the exact number of operations performed as a func-

tion of the input size n.) Suppose you have a computer that can perform

1010 operations per second, and you need to compute a result in at most

an hour of computation. For each of the algorithms, what is the largest

input size n for which you would be able to get the result within an hour?

(a) n2

(b) n3

(c) 100n2

(d) n log n

(e) 2n

(f) 22n

3. Take the following list of functions and arrange them in ascending order

of growth rate. That is, if function g(n) immediately follows function f (n)

in your list, then it should be the case that f (n) is O(g(n)).

f1(n) = n2.5

f2(n) =
√

2n

f3(n) = n + 10

f4(n) = 10n

f5(n) = 100n

f6(n) = n2 log n

4. Take the following list of functions and arrange them in ascending order

of growth rate. That is, if function g(n) immediately follows function f (n)

in your list, then it should be the case that f (n) is O(g(n)).

68 Chapter 2 Basics of Algorithm Analysis

g1(n) = 2
√

log n

g2(n) = 2n

g4(n) = n4/3

g3(n) = n(log n)3

g5(n) = nlog n

g6(n) = 22n

g7(n) = 2n2

5. Assume you have functions f and g such that f (n) is O(g(n)). For each of

the following statements, decide whether you think it is true or false and

give a proof or counterexample.

(a) log2 f (n) is O(log2 g(n)).

(b) 2f (n) is O(2g(n)).

(c) f (n)2 is O(g(n)2).

6. Consider the following basic problem. You’re given an array A consisting

of n integers A[1], A[2], . . . , A[n]. You’d like to output a two-dimensional

n-by-n array B in which B[i, j] (for i < j) contains the sum of array entries

A[i] through A[j]—that is, the sum A[i]+ A[i + 1]+ . . . + A[j]. (The value of

array entry B[i, j] is left unspecified whenever i ≥ j, so it doesn’t matter

what is output for these values.)

Here’s a simple algorithm to solve this problem.

For i = 1, 2, . . . , n

For j = i + 1, i + 2, . . . , n

Add up array entries A[i] through A[j]

Store the result in B[i, j]

Endfor

Endfor

(a) For some function f that you should choose, give a bound of the

form O(f (n)) on the running time of this algorithm on an input of

size n (i.e., a bound on the number of operations performed by the

algorithm).

(b) For this same function f , show that the running time of the algorithm

on an input of size n is also �(f (n)). (This shows an asymptotically

tight bound of �(f (n)) on the running time.)

(c) Although the algorithm you analyzed in parts (a) and (b) is the most

natural way to solve the problem—after all, it just iterates through

Exercises 69

the relevant entries of the array B, filling in a value for each—it

contains some highly unnecessary sources of inefficiency. Give a

different algorithm to solve this problem, with an asymptotically

better running time. In other words, you should design an algorithm

with running time O(g(n)), where limn→∞ g(n)/f (n) = 0.

7. There’s a class of folk songs and holiday songs in which each verse

consists of the previous verse, with one extra line added on. “The Twelve

Days of Christmas” has this property; for example, when you get to the

fifth verse, you sing about the five golden rings and then, reprising the

lines from the fourth verse, also cover the four calling birds, the three

French hens, the two turtle doves, and of course the partridge in the pear

tree. The Aramaic song “Had gadya” from the Passover Haggadah works

like this as well, as do many other songs.

These songs tend to last a long time, despite having relatively short

scripts. In particular, you can convey the words plus instructions for one

of these songs by specifying just the new line that is added in each verse,

without having to write out all the previous lines each time. (So the phrase

“five golden rings” only has to be written once, even though it will appear

in verses five and onward.)

There’s something asymptotic that can be analyzed here. Suppose,

for concreteness, that each line has a length that is bounded by a constant

c, and suppose that the song, when sung out loud, runs for n words total.

Show how to encode such a song using a script that has length f (n), for

a function f (n) that grows as slowly as possible.

8. You’re doing some stress-testing on various models of glass jars to

determine the height from which they can be dropped and still not break.

The setup for this experiment, on a particular type of jar, is as follows.

You have a ladder with n rungs, and you want to find the highest rung

from which you can drop a copy of the jar and not have it break. We call

this the highest safe rung.

It might be natural to try binary search: drop a jar from the middle

rung, see if it breaks, and then recursively try from rung n/4 or 3n/4

depending on the outcome. But this has the drawback that you could

break a lot of jars in finding the answer.

If your primary goal were to conserve jars, on the other hand, you

could try the following strategy. Start by dropping a jar from the first

rung, then the second rung, and so forth, climbing one higher each time

until the jar breaks. In this way, you only need a single jar—at themoment

70 Chapter 2 Basics of Algorithm Analysis

it breaks, you have the correct answer—but you may have to drop it n

times (rather than log n as in the binary search solution).

So here is the trade-off: it seems you can perform fewer drops if

you’re willing to break more jars. To understand better how this trade-

off works at a quantitative level, let’s consider how to run this experiment

given a fixed “budget” of k ≥ 1 jars. In other words, you have to determine

the correct answer—the highest safe rung—and can use at most k jars in

doing so.

(a) Suppose you are given a budget of k = 2 jars. Describe a strategy for

finding the highest safe rung that requires you to drop a jar at most

f (n) times, for some function f (n) that grows slower than linearly. (In

other words, it should be the case that limn→∞ f (n)/n = 0.)

(b) Now suppose you have a budget of k > 2 jars, for some given k.

Describe a strategy for finding the highest safe rung using at most

k jars. If fk(n) denotes the number of times you need to drop a jar

according to your strategy, then the functions f1, f2, f3, . . . should have

the property that each grows asymptotically slower than the previous

one: limn→∞ fk(n)/fk−1(n) = 0 for each k.

Notes and Further Reading

Polynomial-time solvability emerged as a formal notion of efficiency by a

gradual process, motivated by the work of a number of researchers includ-

ing Cobham, Rabin, Edmonds, Hartmanis, and Stearns. The survey by Sipser

(1992) provides both a historical and technical perspective on these develop-

ments. Similarly, the use of asymptotic order of growth notation to bound the

running time of algorithms—as opposed to working out exact formulas with

leading coefficients and lower-order terms—is a modeling decision that was

quite non-obvious at the time it was introduced; Tarjan’s Turing Award lecture

(1987) offers an interesting perspective on the early thinking of researchers

including Hopcroft, Tarjan, and others on this issue. Further discussion of

asymptotic notation and the growth of basic functions can be found in Knuth

(1997a).

The implementation of priority queues using heaps, and the application to

sorting, is generally credited to Williams (1964) and Floyd (1964). The priority

queue is an example of a nontrivial data structure with many applications; in

later chapters we will discuss other data structures as they become useful for

the implementation of particular algorithms. We will consider the Union-Find

data structure in Chapter 4 for implementing an algorithm to find minimum-

Notes and Further Reading 71

cost spanning trees, and we will discuss randomized hashing in Chapter 13.

A number of other data structures are discussed in the book by Tarjan (1983).

The LEDA library (Library of Efficient Datatypes and Algorithms) of Mehlhorn

and Näher (1999) offers an extensive library of data structures useful in

combinatorial and geometric applications.

Notes on the Exercises Exercise 8 is based on a problem we learned from

Sam Toueg.

